14983 measured reflections

 $R_{\rm int} = 0.031$

3585 independent reflections

2652 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-[(2E)-2-(Butan-2-ylidene)hydrazinyl]-6chloropyridazine

Abdul Qayyum Ather,^{a,b} M. Nawaz Tahir,^c* Misbahul Ain Khan^a and Muhammad Makshoof Athar^d

^aDepartment of Chemistry, Islamia University, Bahawalpur, Pakistan, ^bApplied Chemistry Research Center, PCSIR Laboratories Complex, Lahore 54600, Pakistan, ^cUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, and ^dInstitute of Chemistry, University of the Punjab, Lahore, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 26 August 2010; accepted 31 August 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.099; data-to-parameter ratio = 15.0.

The asymmetric unit of the title compound, $C_8H_{11}CIN_4$, contains two independent molecules (A and B) with slightly different conformations: the dihedral angles between the 3chloro-6-hydrazinylpyridazine units and butyl side chains are 4.5 (2) and 11.98 (16)°. In the crystal, the A and B molecules are linked by a pair of $N-H \cdots N$ hydogen bonds, generating an $R_2^2(8)$ loop.

Related literature

For related structures, see: Ather et al. (2009, 2010). For graphset notation, see: Bernstein et al. (1995).

Experimental

Crystal data

C₈H₁₁ClN₄ $M_r = 198.66$ Triclinic, $P\overline{1}$ a = 8.0623 (4) Å b = 11.6768 (5) Å c = 12.1314 (5) Å $\alpha = 113.858(1)^{\circ}$ $\beta = 91.370 \ (2)^{\circ}$

 $\gamma = 104.880 \ (2)^{\circ}$ V = 998.85 (8) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.34 \text{ mm}^-$ T = 296 K $0.25 \times 0.15 \times 0.14 \text{ mm}$

Data collection

Bruker Kappa APEXII CCD

```
diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2005)
  T_{\rm min} = 0.982, \ T_{\rm max} = 0.988
```

Refinement

1

N

$R[F^2 > 2\sigma(F^2)] = 0.035$	239 parameters
$wR(F^2) = 0.099$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.15 \text{ e } \text{\AA}^{-3}$
3585 reflections	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$J3-H3A\cdots N6^{i}$	0.86	2.30	3.0674 (15)	148
$J7-H7\cdots N2^{i}$	0.86	2.24	3.0689 (15)	161

Symmetry code: (i) -x + 1, -y + 1, -z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. They also acknowledge the technical support provided by Bana International, Karachi, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5623).

References

- Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2009). Acta Cryst. E65 01628
- Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010). Acta Cryst. E66, o2441.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2010). E66, o2499 [doi:10.1107/S160053681003504X]

3-[(2E)-2-(Butan-2-ylidene)hydrazinyl]-6-chloropyridazine

A. Q. Ather, M. N. Tahir, M. A. Khan and M. M. Athar

Comment

In continuation of our studies of pyrazolylpyridazine derivatives (Ather *et al.*, 2009, 2010), the title compound (I, Fig. 1) is being reported here.

The title compound (I), consists of two independent molecules. In one molecule, the 3-chloro-6-hydrazinylpyridazine moiety A (C1—C4/N1—N4/CL1) and the butane group B (C5—C8) is planar with r. m. s. deviation of 0.0217 and 0.0130 Å. The dihedral angle between A/B is 4.53 (24)°. In second molecule, the 3-chloro-6-hydrazinylpyridazine moiety C (C9—C12/N5—N8/CL2) and the butane group D (C13—C16) is planar with r. m. s. deviation of 0.0453 and 0.0446 Å. The dihedral angle between C/D is 11.98 (16)°. The title compound consists of dimers due to N—H…N type of H-bonding (Table 1, Fig. 2) with $R_2^2(8)$ ring motif (Bernstein *et al.*, 1995).

Experimental

3-Chloro-6-hydrazinylpyridazine (0.5 g, 3.46 mmol), dissolved in ethyl-methylketone was refluxed for 30 min. The unreacted ethyl-methylketone was distilled off yielding the crude material. The product was re-crystallized in alcohol to affoard colorless needles of (I).

Refinement

The H-atoms were positioned geometrically (N–H = 0.86, C–H = 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H) = xU_{eq}(C, N)$, where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Figures

Fig. 1. Two independent molecules of (I) with 50% probability displacement ellipsoids. Dashed lines denote intermolecular hydrogen bonds, forming a dimer: the N6 molecule shown is generated by the symmetry operation (1-x, 1-y, -z) from the asymmetric atoms.

3-[(2E)-2-(Butan-2-ylidene)hydrazinyl]-6-chloropyridazine

Crystal data

C ₈ H ₁₁ ClN ₄	Z = 4
$M_r = 198.66$	F(000) = 416
Triclinic, <i>P</i> T	$D_{\rm x} = 1.321 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 8.0623 (4) Å	Cell parameters from 2652 reflections
b = 11.6768 (5) Å	$\theta = 2.1 - 25.3^{\circ}$
c = 12.1314 (5) Å	$\mu = 0.34 \text{ mm}^{-1}$
$\alpha = 113.858 \ (1)^{\circ}$	T = 296 K
$\beta = 91.370 \ (2)^{\circ}$	Needle, colorless
$\gamma = 104.880 \ (2)^{\circ}$	$0.25\times0.15\times0.14~mm$
V = 998.85 (8) Å ³	

Data collection

Bruker Kappa APEXII CCD diffractometer	3585 independent reflections
Radiation source: fine-focus sealed tube	2652 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.031$
Detector resolution: 8.10 pixels mm ⁻¹	$\theta_{\text{max}} = 25.3^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
ω scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005)	$k = -13 \rightarrow 13$
$T_{\min} = 0.982, \ T_{\max} = 0.988$	$l = -14 \rightarrow 11$
14983 measured reflections	

Refinement

Refinement on F^2	Primary a methods
Least-squares matrix: full	Secondar
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydroge. sites
$wR(F^2) = 0.099$	H-atom p
<i>S</i> = 1.05	$w = 1/[\sigma^2]$ where P
3585 reflections	$(\Delta/\sigma)_{max}$
239 parameters	$\Delta \rho_{max} =$
0 restraints	$\Delta \rho_{\min} = -$

Primary atom site location: structure-invariant direct nethods Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring ites

H-atom parameters constrained

$$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0426P)^{2} + 0.1867P]$$

where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
 $(\Delta/\sigma)_{max} = 0.001$
 $\Delta\rho_{max} = 0.15 \text{ e} \text{ Å}^{-3}$
 $\Delta\rho_{min} = -0.20 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
C11	0.56878 (7)	1.01144 (5)	0.14461 (4)	0.0711 (2)
N1	0.65078 (7)	0.81818 (4)	-0.01826 (4)	0.0494 (5)
N2	0.69138 (9)	0.70411 (6)	-0.06328 (4)	0.0477 (5)
N3	0.73568 (11)	0.52631 (8)	-0.04789 (4)	0.0485 (5)
N4	0.75811 (18)	0.46292 (14)	0.02371 (12)	0.0446 (5)
C1	0.6218 (2)	0.86549 (17)	0.09480 (15)	0.0457 (6)
C2	0.6309 (2)	0.80724 (18)	0.17388 (15)	0.0482 (6)
C3	0.6692 (2)	0.69257 (17)	0.12939 (14)	0.0456 (6)
C4	0.6972 (2)	0.64155 (16)	0.00695 (14)	0.0403 (6)
C5	0.8018 (2)	0.35764 (18)	-0.02463 (16)	0.0446 (6)
C6	0.8294 (3)	0.29374 (19)	0.05683 (17)	0.0546 (7)
C7	0.8037 (3)	0.3631 (2)	0.18693 (18)	0.0706 (9)
C8	0.8324 (3)	0.29472 (19)	-0.15401 (16)	0.0571 (7)
C12	0.61890 (8)	0.92216 (5)	0.55956 (5)	0.0741 (2)
N5	0.4684 (2)	0.70148 (16)	0.37821 (14)	0.0577 (6)
N6	0.3743 (2)	0.57428 (16)	0.32230 (13)	0.0577 (6)
N7	0.2290 (2)	0.38112 (15)	0.32596 (13)	0.0557 (6)
N8	0.1391 (2)	0.31693 (16)	0.38987 (13)	0.0527 (6)
С9	0.4960 (2)	0.75931 (18)	0.49629 (16)	0.0499 (6)
C10	0.4326 (3)	0.69965 (19)	0.57130 (16)	0.0572 (7)
C11	0.3386 (3)	0.57264 (19)	0.51703 (16)	0.0560 (7)
C12	0.3135 (2)	0.51037 (18)	0.38917 (15)	0.0461 (6)
C13	0.0646 (3)	0.19453 (19)	0.33475 (16)	0.0514 (7)
C14	-0.0380 (3)	0.1305 (2)	0.40720 (18)	0.0656 (8)
C15	-0.0180 (3)	0.2152 (2)	0.5419 (2)	0.0842 (10)
C16	0.06718 (9)	0.10973 (7)	0.20380 (5)	0.0690 (8)
H2	0.61145	0.84592	0.25415	0.0578*
H3	0.67676	0.64881	0.17770	0.0547*
H3A	0.74569	0.49409	-0.12405	0.0582*
H6A	0.75051	0.20566	0.02287	0.0655*
H6B	0.94655	0.28638	0.05598	0.0655*
H7A	0.88583	0.44865	0.22347	0.1059*
H7B	0.68809	0.37098	0.18942	0.1059*
H7C	0.82074	0.31382	0.23104	0.1059*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

H8A	0.72987	0.27583	-0.20780	0.0858*
H8B	0.92751	0.35314	-0.16869	0.0858*
H8C	0.85936	0.21485	-0.16845	0.0858*
H7	0.23145	0.34080	0.24923	0.0668*
H10	0.45400	0.74553	0.65567	0.0687*
H11	0.29214	0.52778	0.56265	0.0673*
H14A	-0.00369	0.05316	0.39609	0.0787*
H14B	-0.15974	0.10162	0.37404	0.0787*
H15A	0.10043	0.23887	0.57731	0.1264*
H15B	-0.09207	0.16776	0.57958	0.1264*
H15C	-0.04957	0.29300	0.55442	0.1264*
H16A	-0.00022	0.13112	0.15265	0.1035*
H16B	0.01880	0.01944	0.18790	0.1035*
H16C	0.18459	0.12428	0.18693	0.1035*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.1018 (5)	0.0565 (3)	0.0605 (3)	0.0378 (3)	0.0197 (3)	0.0210 (3)
N1	0.0617 (10)	0.0490 (9)	0.0437 (8)	0.0192 (8)	0.0131 (7)	0.0235 (7)
N2	0.0627 (10)	0.0477 (9)	0.0393 (8)	0.0201 (8)	0.0144 (7)	0.0222 (7)
N3	0.0670 (10)	0.0479 (9)	0.0362 (7)	0.0190 (8)	0.0112 (7)	0.0219 (7)
N4	0.0485 (9)	0.0478 (9)	0.0427 (8)	0.0109 (7)	0.0063 (7)	0.0261 (7)
C1	0.0480 (11)	0.0428 (10)	0.0437 (10)	0.0106 (8)	0.0075 (8)	0.0173 (8)
C2	0.0534 (11)	0.0505 (11)	0.0360 (9)	0.0100 (9)	0.0095 (8)	0.0167 (8)
C3	0.0521 (11)	0.0494 (11)	0.0367 (9)	0.0091 (9)	0.0078 (8)	0.0230 (8)
C4	0.0404 (10)	0.0420 (10)	0.0373 (9)	0.0066 (8)	0.0055 (7)	0.0188 (8)
C5	0.0414 (10)	0.0454 (11)	0.0467 (10)	0.0070 (8)	0.0060 (8)	0.0228 (9)
C6	0.0529 (12)	0.0582 (12)	0.0621 (12)	0.0144 (10)	0.0074 (9)	0.0358 (10)
C7	0.0867 (16)	0.0831 (16)	0.0590 (12)	0.0271 (13)	0.0127 (11)	0.0454 (12)
C8	0.0663 (13)	0.0581 (12)	0.0506 (11)	0.0227 (10)	0.0131 (9)	0.0236 (10)
C12	0.0911 (4)	0.0514 (3)	0.0707 (4)	0.0066 (3)	0.0057 (3)	0.0259 (3)
N5	0.0740 (12)	0.0536 (10)	0.0461 (9)	0.0099 (9)	0.0093 (8)	0.0269 (8)
N6	0.0790 (12)	0.0537 (10)	0.0401 (8)	0.0104 (9)	0.0088 (8)	0.0249 (8)
N7	0.0760 (11)	0.0497 (10)	0.0379 (8)	0.0079 (8)	0.0112 (8)	0.0213 (7)
N8	0.0610 (10)	0.0546 (10)	0.0466 (9)	0.0123 (8)	0.0115 (7)	0.0282 (8)
C9	0.0580 (12)	0.0459 (11)	0.0482 (10)	0.0162 (9)	0.0093 (9)	0.0215 (9)
C10	0.0795 (14)	0.0535 (13)	0.0373 (10)	0.0183 (11)	0.0123 (9)	0.0185 (9)
C11	0.0786 (14)	0.0534 (12)	0.0409 (10)	0.0169 (11)	0.0182 (9)	0.0256 (9)
C12	0.0540 (11)	0.0488 (11)	0.0394 (9)	0.0147 (9)	0.0086 (8)	0.0225 (9)
C13	0.0534 (12)	0.0540 (12)	0.0493 (10)	0.0128 (10)	0.0069 (9)	0.0261 (10)
C14	0.0692 (14)	0.0642 (14)	0.0642 (13)	0.0077 (11)	0.0132 (10)	0.0349 (11)
C15	0.1004 (19)	0.0848 (18)	0.0671 (15)	0.0104 (14)	0.0291 (13)	0.0410 (13)
C16	0.0818 (16)	0.0572 (13)	0.0572 (12)	0.0078 (11)	0.0125 (11)	0.0212 (10)

Geometric parameters (Å, °)

Cl1—C1	1.734 (2)	С6—Н6В	0.9700
Cl2—C9	1.733 (2)	С6—Н6А	0.9700

	1.0.50.1 (0)		0.0700
N1—N2	1.3504 (9)	С7—Н7А	0.9600
N1—C1	1.3075 (17)	С7—Н7С	0.9600
N2—C4	1.3345 (19)	С7—Н7В	0.9600
N3—N4	1.3843 (18)	С8—Н8А	0.9600
N3—C4	1.360 (2)	С8—Н8С	0.9600
N4—C5	1.276 (3)	С8—Н8В	0.9600
N3—H3A	0.8600	C9—C10	1.388 (3)
N5—C9	1.297 (2)	C10—C11	1.348 (3)
N5—N6	1.350 (3)	C11—C12	1.405 (2)
N6—C12	1.333 (3)	C13—C16	1.4981 (19)
N7—N8	1.381 (2)	C13—C14	1.505 (3)
N7—C12	1.357 (3)	C14—C15	1.508 (3)
N8—C13	1.272 (3)	C10—H10	0.9300
N7—H7	0.8600	C11—H11	0.9300
C1—C2	1.392 (3)	C14—H14A	0.9700
C2—C3	1.347 (3)	C14—H14B	0.9700
C3—C4	1.408 (2)	C15—H15A	0.9600
C5—C8	1.498 (3)	C15—H15B	0.9600
C5—C6	1.501 (3)	C15—H15C	0.9600
C6—C7	1.503 (3)	C16—H16A	0.9600
С2—Н2	0.9300	C16—H16B	0.9600
С3—Н3	0.9300	C16—H16C	0.9600
N2—N1—C1	118.43 (10)	H8A—C8—H8C	109.00
N1—N2—C4	119.67 (8)	С5—С8—Н8А	109.00
N4—N3—C4	117.38 (10)	H8B—C8—H8C	109.00
N3—N4—C5	118.39 (13)	H8A—C8—H8B	109.00
C4—N3—H3A	121.00	С5—С8—Н8С	109.00
N4—N3—H3A	121.00	С5—С8—Н8В	109.00
N6—N5—C9	119 09 (18)	$C_{2}^{2} - C_{2}^{2} - C_{10}^{2}$	119 98 (14)
N5-N6-C12	119.53 (15)	$C_{2}^{2} - C_{2}^{2} - N_{5}^{2}$	115.69 (16)
N8—N7—C12	117.28 (14)	$N_{5} - C_{9} - C_{10}$	124 3 (2)
N7-N8-C13	119.01 (15)	C9 - C10 - C11	127.3(2) 11737(17)
N8_N7_H7	121.00	C_{10} C_{11} C_{12}	117.57(17) 117.67(19)
10 - 10 17 17 17	121.00	N7 C12 C11	117.07(19) 122.28(19)
$N_1 = C_1 = C_2$	121.00	N/	122.28(19) 115.75(15)
NI = CI = C2	124.73(10) 110.02(12)	N6 C12 C11	113.73(13)
CII = CI = C2	119.92 (13)	N0-C12-C11	121.96 (19)
	115.33 (13)	N8-C13-C14	116.84 (17)
C1 - C2 - C3	117.28 (16)	N8—C13—C16	125.68 (18)
C2—C3—C4	117.42 (17)	C14—C13—C16	117.47 (17)
N2—C4—N3	114.99 (12)	C13—C14—C15	115.48 (19)
N3—C4—C3	122.59 (16)	С9—С10—Н10	121.00
N2—C4—C3	122.41 (16)	C11—C10—H10	121.00
C6—C5—C8	117.44 (18)	C10—C11—H11	121.00
N4—C5—C8	125.76 (19)	C12—C11—H11	121.00
N4—C5—C6	116.78 (16)	C13—C14—H14A	108.00
C5—C6—C7	115.54 (19)	C13—C14—H14B	108.00
С3—С2—Н2	121.00	C15—C14—H14A	108.00
С1—С2—Н2	121.00	C15—C14—H14B	108.00
С4—С3—Н3	121.00	H14A—C14—H14B	107.00

supplementary materials

С2—С3—Н3	121.00	C14—C15—H15A	109.00
С5—С6—Н6А	108.00	C14—C15—H15B	109.00
С7—С6—Н6В	108.00	C14—C15—H15C	109.00
С5—С6—Н6В	108.00	H15A—C15—H15B	110.00
Н6А—С6—Н6В	107.00	H15A—C15—H15C	109.00
С7—С6—Н6А	108.00	H15B—C15—H15C	110.00
Н7А—С7—Н7В	110.00	C13—C16—H16A	109.00
Н7А—С7—Н7С	109.00	C13—C16—H16B	109.00
С6—С7—Н7С	109.00	C13—C16—H16C	109.00
H7B—C7—H7C	109.00	H16A—C16—H16B	109.00
С6—С7—Н7В	109.00	H16A—C16—H16C	109.00
С6—С7—Н7А	109.00	H16B—C16—H16C	109.00
C1—N1—N2—C4	1.45 (15)	N8—N7—C12—C11	12.0 (3)
N2—N1—C1—Cl1	-179.47 (8)	N7—N8—C13—C16	1.2 (3)
N2—N1—C1—C2	0.5 (2)	N7—N8—C13—C14	-177.43 (18)
N1—N2—C4—N3	178.67 (10)	N1—C1—C2—C3	-1.3 (3)
N1—N2—C4—C3	-2.6 (2)	Cl1—C1—C2—C3	178.68 (14)
C4—N3—N4—C5	-176.95 (15)	C1—C2—C3—C4	0.2 (3)
N4—N3—C4—N2	174.58 (12)	C2-C3-C4-N2	1.8 (3)
N4—N3—C4—C3	-4.1 (2)	C2—C3—C4—N3	-179.62 (16)
N3—N4—C5—C6	178.44 (15)	N4—C5—C6—C7	-0.6 (3)
N3—N4—C5—C8	0.2 (3)	C8—C5—C6—C7	177.78 (19)
C9—N5—N6—C12	-0.8 (3)	Cl2—C9—C10—C11	-179.66 (18)
N6—N5—C9—Cl2	179.70 (14)	N5-C9-C10-C11	1.1 (3)
N6—N5—C9—C10	-1.0 (3)	C9-C10-C11-C12	0.6 (3)
N5—N6—C12—N7	-176.31 (16)	C10-C11-C12-N6	-2.3 (3)
N5—N6—C12—C11	2.5 (3)	C10-C11-C12-N7	176.4 (2)
C12—N7—N8—C13	-176.99 (19)	N8-C13-C14-C15	-8.9 (3)
N8—N7—C12—N6	-169.24 (16)	C16—C13—C14—C15	172.35 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N3—H3A···N6 ⁱ	0.86	2.30	3.0674 (15)	148
N7—H7···N2 ⁱ	0.86	2.24	3.0689 (15)	161
Symmetry codes: (i) $-x+1$, $-y+1$, $-z$.				

Fig. 1